Structure of Gnidicoumarin, a Novel Pentacyclic Dicoumarin from Gnidia lamprantha

By S. Morris Kupchan,* J. G. Sweeny, T. Murae, M.-S. Shen, and R. F. Bryan (Department of Chemistry, University of Virginia, Charlottesville, Virginia 22901)

Summary The isolation, spectral properties, and X-ray structure determination of gnidicoumarin(1), a novel pentacyclic dicoumarin, are reported.

Gnidicoumarin, which is demonstrated herein to possess the $2 H, 12 H$-furo $\left[2,3-h: 5,4-h^{\prime}\right]$ bis[1]benzopyran-2,12-dione structure (1), is the first reported example of a compound having this ring system. The compound was isolated from a 95% ethanol extract of the roots of Gnidia lamprantha Gilg (Thymelaeaceae). Partition of the residue between $\mathrm{CHCl}_{3}-\mathrm{H}_{2} \mathrm{O}$ and column chromatography of the $\mathrm{CHCl}_{3}-$ soluble fractions on SilicAR CC-7 $\left(8 \% \mathrm{MeOH}-\mathrm{CHCl}_{3}\right.$ elution) gave (1), $\mathrm{C}_{18} \mathrm{H}_{8} \mathrm{O}_{5}, 0.011 \%$, m.p. $355-365^{\circ}$ (decomp.; from HCONMe 2) ; $\lambda_{\max }(\mathrm{EtOH}) 225(\epsilon 20,100), 268(23,400)$, $279(27,000), 292(\mathrm{~s}, 14,300)$ and $325(6350) \mathrm{nm}$; $\nu_{\max }(\mathrm{KBr})$
$5 \cdot 75,5 \cdot 83,6 \cdot 17$, and $6 \cdot 25 \mu \mathrm{~m} ; m / e 304\left(M^{+}\right), 276,248,220$, $192,164,124$, and 96.

(11)

From the marked insolubility of (1) $(<1 \mathrm{mg} / 100 \mathrm{ml})$ in common organic solvents, its high m.p., its spectral properties, and its lack of alcohol or ketonic functionalities, a
highly aromatic structure was inferred. Further evidence from the i.r. $(5 \cdot 75,5 \cdot 83 \mu \mathrm{~m})$ and mass spectra (5 consecutive losses of CO) suggested that the molecule was a biscoumarin. ${ }^{1}$

The structure of gnidicoumarin was established by singlecrystal X-ray analysis. Crystals belong to the monoclinic system, space group $P 2_{1} / n$, with $a=7 \cdot 599(1), b=18 \cdot 829$ (2), $c=8.969(1) \AA, \beta=91.07(1)^{\circ}$, and $Z=4$. The structure was solved by direct methods ${ }^{2}$ and refined by leastsquares methods to $R=0.039$ for 1682 independent reflections whose intensities were measured by counter diffractometry with $\mathrm{Cu}-K_{\alpha}$ radiation.

The molecule is non-planar but has effective C_{2} sym-
${ }^{1}$ Cf., e.g., S. C. Das, S. Sengupta, and W. Herz, Chem. and Ind., 1973, 792
${ }^{2}$ G. Germain, P. Main, and M. M. Woolfson, Acta Cryst., 1970, B 26, 274.
metry about an axis bisecting the planar furan ring. $\mathrm{C}(17)$, $\mathrm{O}(1), \mathrm{C}(2)$, and $\mathrm{O}(2)$ are $0 \cdot 06,0 \cdot 12,0 \cdot 32$, and $0.45 \AA$, respectively, above the plane of the furan ring while the corresponding atoms $\mathrm{C}(14), \mathrm{O}(13), \mathrm{C}(12)$, and $\mathrm{O}(12)$ are $0 \cdot 07,0 \cdot 13$, $0 \cdot 29$, and $0.45 \AA$ below that plane. The $O(1) \cdots O(13)$ separation is $2 \cdot 85 \AA$.

We thank Dr. Robert E. Perdue, jun., U.S. Department of Agriculture, for the plant material (collected in Kenya in June, 1972), and the National Cancer Institute for financial support.

